
Base Library Priorities

● Introduction... GNUstep priorities
● MacOS-X (Cocoa) compatibility
● Stability and Reliability
● Cross platform portability issues



GNUstep priorities

● GNUstep is a cross platform development 
system

● Provides MacOS-X/Cocoa compatibility
● Write once, build/run anywhere.
● Uses the same standard toolset everywhere.
● Is the core on which a desktop is built.
● People wanting a cross platform development system should definitely be contributing to GNUstep
● People wanting a NeXTSTEP like system should contribute to the Backbone project and to GNUstep
● People wanting to try out new, non-standard technologies, should contribute to th Etoile project and to GNUstep



Cocoa compatibility

● All original Cocoa API present and working
● Except Apple scripting extensions
● Possibly faster and more reliable than Cocoa
● Complete some newer classes
● Add new methods to existing classes
● Need to add some newer classes
● Need option to build as a framework



Recent additions

● NSNetServices ...
● large contribution by Chris Vetter
● needs testing on windows
● NSXMLParser, used as fallback if no libxml2
● contribution by Nikolaus Schaller
● also NSPredicate and others.
● New URL stuff, incomplete.
● NSStream code, incomplete
● contribution by Derek Zhou
● NSAffineTransform (from gui)



Features to complete

● Key value observing
● SSL streams (unix and windows)
● SOCKS streams
● New URL system
● The latest methods for existing classes



Classes to add

● NSLocale
● Apple scripting classes
● NSCalendar/NSDateComponents
● NSXML tree representation classes
● NSSpellServer (from gui)



Other considerations

● Make base available as a framework
● CoreFoundation ... features not in Cocoa
● Do we want to support this API?
● If so, what parts do we prioritise?
● Can we build it on base?



Stability and Reliability

● Already very stable/reliable
● Keep it that way
● Backward compatibility
● Avoiding conflicts
● Release strategy



Already very stable/reliable

● Compares well with Foundation for bugs
● Compares well with Foundation for speed
● API complete wrt early Cocoa
● Feature removal deprecated first
● Stable releases typically at 8 month intervals 



Keep it that way

● Everything else depends on base.
● Rigorous deprecation cycle
● Keep using and extending regression tests
● Add only MacOS-X classes/methods
● Any exceptions need very full debate



Backward compatibility

● Historically, maintained API compatibility
● Binary compatibility desirable for distributions
● Make feature deprecation/removal slow
● Make no changes to constants
● Make no changes to ivar layouts
● How can we check/ensure this?
● How soon can we be ready for this?



Avoiding conflicts

● Use of the NS prefix is a good start
● Use of _ prefix for private methods is good
● Use of _ prefix for private ivars is good
● Should use _GS for private classes/functions
● GS_ATTRIB_PRIVATE on functions
● tells compiler to hide function from outside



Release strategy

● New stable branch and (unstable) trunk
● Make frequent 'bugfix' releases from stable
● Make frequent 'unstable' releases from trunk
● ABI/API constant between bugfix releases
● ABI/API varies between unstable releases
● Old apps run with any bugfix release
● Occasionally (18 months?) make a 'full' release
● Trunk is copied to the stable branch and we ask distributions and apps to upgrade.



Cross platform portability

● Completeness on all platforms
● Configured implementation differences
● Dependencies
● Microsoft windows



Completeness on all platforms

● Write once, build/deploy anywhere is broken 
if something only works on some platforms

● Should encourage contributors to support all 
platforms (even mswindows)

● Should not release a feature (except in an 
unstable release) if it is not supported on all 
major platforms

● Must be flexible about this, but document any 
exceptions very well.



Configured implementation 
differences

● Some platform differences are inevitable
● Performance trade-offs (cpu/memory etc) 

vary by platform (eg. PDAs)
● May require different data structures and 

algorithms for the same functionality.
● Need a mechanism to formalise conditional 

compilation options.
● Perhaps an extra internal header file?



Dependencies

● Base has very very few dependencies, gcc, 
bash, make, gnustep-make, ffcall or ffi to 
build, ffcall/ffi libraries at runtime.

● Partial dependencies are openssl for HTTPS 
support, libxml2/libxslt for GSXML extensions 
and dns_sd for NSNetServices.

● Should depend on only standard 
tools/libraries where possible

● Make use of platform specific 
tools/libraries,but have a fallback mechanism 
where they are not present.



Microsoft windows

● Mswindows is so different to other platforms 
that we have to accommodate it specially.

● To maintain a consistent toolset we have to 
use mingw/msys and ports of various 
standard tools.

● We need an installer to easily provide the 
development environment.

● We need an installer for runtime 
dependencies too.

● There is room for a separate project to 
develop a native windows toolset.


